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Abstract. Given a set Ω and a proximity function φ : Ω×Ω→ R+, we
define a new metric for Ω by considering a path distance in the global
graph Ω, in which all the points are considered to be directly connected
in a full graph. We analyze the properties of such a metric, and several
procedures for defining the initial proximity matrix (φ(a, b))(a,b)∈Ω×Ω.
Our motivation has its roots in the current interest in finding effective
algorithms for detecting and classifying relations among elements of a
social network. For example, the analysis of a set of companies working
for a given public administration or other figures in which fraud detec-
tion automatic systems are needed. Using this formalism, we state our
main idea regarding fraud detection, that essentially says that fraud can
be detected because it produces a meaningful local change of density in
the metric space defined in this way.

1. Introduction

The great increase of network conexions due to the broad use of internet
has opened the door to a new way of social organization, that allows to gen-
erate solid and powerful structures to commit economic fraud. In parallel,
the development of the same technical tools that permit to stablish these
criminal networks allow to create new procedures to detect them. Indeed,
fraud detection is a current hot topic appearing daily in the news, and this
produces a high demand of theoretical and practical mathematical instru-
ments for fighting against fraud. Some theoretical developments coming
from social sciences have been presented since the mid-twentieth century:
the most poverful approach from this point of view seems to be the so called
Fraud Triangle theory, that have show to be useful also in applications (see
for example [3, 7, 8, 14, 15]). Our methodology, however, is based on the
mathematical analysis of fraud.

The aim of this paper is to explain a new topological framework for un-
derstanding and detecting the processes of fraud. The big ammount of
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information that the new technologies bring into the scene have changed the
way a scientist can understand the fraud as a mathematical phenomenon:
invoices, emails, company registers, provide highly meaningful information
that may help the analyst to detect evidences of fraud. The extraordinarily
large set of data that accompanies any fraud process makes necessary to
change the usual analysis tools, traditionally based on the lawyers study
of related documents. New ways of understanding and informatic tools are
clearly needed, and the theoretical development of the associated mathe-
matical models must grow together. Therefore, our idea is to propose a new
model based on a topological graph approach to the analysis of networks.

Several mathematical theories have been already applied to fraud detec-
tion, involving quite different approaches: game theory, statistical analysis,
graph theory,... (see for example [1, 9, 11, 13, 17, 18]). One of the more
succesful has been shown to be the graph based analytical approach, which
has already given some programs for fraud detection. In this paper we pro-
pose a new technique for defining quasi-pseudo-metrics for complete graph
structures. The vertices/nodes are the elements that must be analyzed:
persons, entities, companies, invoices, emails... Starting with a graph with
edges among vertices having a finite set of properties, we establish a way
for defining a family of quasi-pseudo-metrics for translating the graph to a
topological space. We will call such a struture a “topological graph”, and
the topology will be constructed using quasi-pseudo-metrics (see for exam-
ple [6, 10] for the basics). Once we can define neighbours of vertices, we use
the topological properties to characterize the relevant elements of the space,
that must become the main objects of the antifraud analysis. Besides the
topological space, we need an additive set function acting in the class of all
subsets of the original set of nodes —a measure— for helping to measure
the “size” (given in terms of number of elements, weighted means, or similar
mathematical features) of the neighbours of the nodes. Together, both tools
(metric and measure) allow to define the fundamental object of our model:
the density of the family of neighbours of a given node.

The abstract main supporting idea of our model is that the fraud can
be detected by searchig for unusual concentration of mass phenomena in a
specifically defined topological graph. It can be established broadly in the
following terms: the “map of density” of a graph should follow an easy-
to-recognize pattern. If no previous information on the pattern is available,
then the hypothesis must be that the relevant vertices —the ones that must
focus the attention of the antifraud analysts— are the ones in which there
is an anomalous density distribution. In other where the uniform density
distribution is assumed as reference pattern. Small local densities as well as
big local densities should indicate a ”hot node” in terms of corruption, and
would allow to classify the different schemes of fraud.

In this article we firstly present the mathematical structure, showing at
each step examples that would help the reader to follow the development of
the model. The main results will be shown in the central part of the paper.
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2. Preliminaries

Let us introduce some technical formal concepts. We use standard mathe-
matical notation. We will write R+ for the set of non-negative real numbers.
A quasi-pseudo-metric on a set Ω ([6, 10]) is a function d : Ω × Ω → R+

satisfying that for a, b, c ∈ Ω,

(1) d(a, b) = 0 if a = b, and
(2) d(a, b) ≤ d(a, c) + d(c, b).

Such a function is enough for defining a topology by means of the basis
of neighborhoods that is given by the open balls. If ε > 0, we define the ball
of radius ε and center in a ∈ Ω as

Bε(a) :=
{
b ∈ Ω : d(a, b) < ε

}
.

Note that this topology is in fact given by the countable basis of neighbor-
hoods provided by the balls B1/n(x) = {y ∈ X : d(x, y) ≤ 1/n}, n ∈ N.
The resulting metrical/topological structure (Ω, d) is called a quasi-pseudo-
metric space.

If the function d is symmetric, that is, d(a, b) = d(b, a), then it is called a
pseudo-metric. If d separates points —that is, if d(a, b) = 0 only in the case
that a = b— but it is not necessarily symmetric, then it is called a quasi-
metric. Finally, if both requirements hold —symmetry and separation—, d
is called a metric (or a distance). In this case, the topology generated by the
balls is Hausdorff. These notions have been already used in several applied
contexts, as for example for the design of semantic computational tools
([12, 16]) or the analysis of complexity measures in theoretical computer
science ([4, 5]).

3. Mathematical structures for detection of fraud in public
administration and business.

In this section we introduce the general framework for understanding the
fraud processes into a mathematical structure. Let Ω be a set of objects
of the same class related to the representation of individuals of a system.
Typically, this set is composed by vectors containing information of different
type, each class in each coordinate. A vector v in this class (belonging to a
subset Ω of a vector space V ) is univocally associated to an individual: for
example, the set Ω may be composed by invoices of a given year paid by a
public administration; each vector may be given by the atributes of the in-
voice, for example, First coordinate= date of payment, Second coordinate=
total amount paid, Third coordinate= name of the company, that is,

v =
(
date of payment, total amount paid, name of the company

)
.

Let us consider now a quasi-pseudo-metric d in the set Ω. The explanation
of different systematic procedures for defining it will be given in the next
section. In the model it may represent the proximity of different elements
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of Ω among them, and the definition must make sense for measuring the
economic activity (or other kind of relevant activities) related to the process
that is being analyzed. For instance, in the previous example a reasonable
distance will be given by the following function. Let v = (x1, x2, x3), w =
(y1, y2, y3) ∈ Ω. We define

d(v, w) = d1(x1, y1) + d2(x2, y2) + d3(x3, y3),

where d1(x1, y1) = |x1 − y1|, d2(x2, y2) = |x2 − y2| and d3(x3, y3) = 0 if the
invoice v was paid to the same company that the invoice w, and d3(x3, y3) =
1 otherwise. This clearly defines a distance.

Let us explain other example with some details.

Example 3.1. The set of objects Ω is defined by companies involved in
providing services to the public administration in a given year. Each of
them is represented by a vector defined by

• First coordinate= total amount paid to the company (in K Euros).
• Second coordinate= number of services provided by the company.
• Third coordinate= geographical location of the company (first coor-

dinate of the position vector).
• Fourth coordinate= geographical location of the company (second co-

ordinate of the position vector).

This set would be considered a sufficient system, in the sense that it would
contain enough information for detecting an anomalous behavior. We iden-
tify each company with its representing vector, that is, Ω is a subset of R4.
We have to measure the distance among the elements that are considered
here. The first obvious choice is to measure the Euclidean distance among
vectors, that is if v1, v2 ∈ Ω,

d(v1, v2) =
∥∥∥v1 − v2

∥∥∥
2
,

where
∥∥·∥∥

2
denotes the Euclidean norm in R4. However, this option provides

an information that only allows to compare companies among them, and
grouping them by similarity of activity and location. A priori, it does not
seem to be useful for fraud detection.

A more subtle option would be the following. Consider the seminorms

pE(x1, x2, x3, x4) =
∥∥∥(x1, x2, 0, 0)

∥∥∥
2
, v = (x1, x2, x3, x4) ∈ R4,

and

pL(x1, x2, x3, x4) =
∥∥∥(0, 0, x3, x4)

∥∥∥
2
, v = (x1, x2, x3, x4) ∈ R4.

Both of them are seminorms, and so the formulas dE(v1, v2) = pE(v1−v2)
and dL(v1, v2) = pL(v1 − v2) define pseudometrics (d(v1, v2) = 0, does not
necessarily imply v1 = v2). The first one allows grouping companies by sim-
ilar economic activity —that is, a small neigbourhood of a company/vector
v contains companies with similar economic relation with the public admin-
istration. Also, a big value of pE(v) in comparison with the values of pE of
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other companies indicates a big economical activity, that would be an indica-
tion either of fraud or risk of fraud. The second one —dL— would be used
for detecting changes of names of the same company for hiding an unusual
recruitment with the public administration of a single company.

Let us define now two more structures. Consider the σ-algebra B of Borel
sets of (Ω, d) —typically, Ω will be a finite set and B will be the class 2Ω

of all the subsets of Ω—. Consider a Borel measure µ : B → R+. On the
other hand, consider also a function ψ : Ω × R+ → R+ that is increasing
with respect to the second variable. It will be considered as a radial weight
associated to the radius of the balls for the metric topology.

Definition 3.2. Let F (R+,R+) be the set of real non-negative functions
acting in the positive real numbers. We define the density function F as the
function-valued map

F : Ω× R+ → F (R+,R+)

given by

(a, ε) 7→ F(a, ε) = fa(ε) :=
µ(Bε(a))

ψ(a, ε)
.

Remark 3.3. Let us explain a —in a sense canonical— example of this
notion. Consider a finite set of companies Ω = Ω0 in the setting of Example
3.1. Take µ(·) = | · | to be the counting measure on the σ-algebra of all finite
subsets 2Ω0 , and ψ(a, ε) = ε4 for all a ∈ Ω0 —the power 4 for representing
the magnitude of a hypervolume in a space of 4-dimensions—. The metric
d is the one defined in the first part of this example. In this case,

F(a, ε) = fa(ε) =
|Bε(a)|
ε4

=
1

ε4
×
(

number of companies in {b ∈ Ω : ‖b− a‖2 < ε}
)
.

This formula is clearly defining a density-type parameter: it is given by a
ratio among “number of things” in a given volume of the space and the “size”
of such volume.

We are prepared now to define the main concept of this paper.

Definition 3.4. Let r > 0. We define the concentration of mass (out of a
neighbourhood of the element a of size r), or the local density around a, as
the function Cr : Ω→ R+ ∪+∞ given by

Cr(a) =

∫ +∞

r
fa(ε) dν(ε), a ∈ Ω,

where ν is (another countably additive) Borel measure on (0,∞).

For ν, we are thinking in a Dirac’s delta of a given value ε0 > 0, or
Lebesgue measure dε. Note that the requirement r > 0 is impossed to assure
the convergence of the integral, at least in the canonical case explained in
Remark 3.3. In the standard finite case, if d is a distance, it can be taken as
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the minimum of all the pairwise distances in the set Ω not being 0, assuring
in this way that Br(a) contains just an element for any a ∈ Ω.

The central methodological idea of the present paper is that fraud detec-
tion may be considered as a systematic procedure for finding “outliers” in a
quasi-pseudo-metric space. Indeed, fraud can be modelled as a concentra-
tion of mass phenomenon: that is, elements a ∈ Ω are associated to processes
that are “suspicious of fraud” if Cr(a) has an unexpected value —that is, ei-
ther “too high” or “too low” when comparing with the mean value—. Each
of these deviations can be interpreted in different terms, providing diverse
figures of fraud.

It must be taken into account that special elements in the system may
have high values of Cr and this situation can be considered as “normal”:
for instance, if there is only one company providing a given service; or, the
name of the responsible of the public administration would appear in all the
invoices.

Remark 3.5. Although the way of measuring local density given in Defini-
tion 3.4 seems to be the most adequate to the original problem, other ways of
measuring this magnitude would make sense. For instance, for the discrete
case we can compute the supremum of the size of the balls r for which the
ball contains only its center a, that is

rmax(a) := sup{r > 0 : |Br(a)| = 1},

that coincides with the minimum distance to the closer element of the space,
that is

rmax(a) = min{d(a, b) : b ∈ Ω, b 6= a}.
Note that in this case, a big value of rmax means small density.

Remark 3.6. In the examples in this section it has been used the Euclidean
norm in the finite dimensional spaces for constructing the underlying topo-
logical structure. This way of measuring the distances is easy and provides
directly a metric in the set Ω. However, this is not the best option in gen-
eral, and an alternate method for defining metric structures is required. The
reason is that often the indexes that are naturally used for indicating the
distance among elements of Ω are not metrics; in fact, they are not quasi-
pseudo-metrics. Let us explain this relevant point with an example.

Suppose that Ω is a set of person in a social net, and we have a function
φ that “measures” the “level of familiarity” among the elements of Ω in
the following way: φ(a, b) = 1 if a an b are close friends, φ(a, b) = 2 if a
an b are friends but they meet occasionally, φ(a, b) = 3 if a an b are just
acquaintances, and φ(a, b) = 4 if a an b never met. It may clearly happen
that a is a close friend of b, b is a close friend of c, but a and c are only
acquaintances; that is

3 = φ(a, c) > φ(a, b) + φ(b, c) = 1 + 1,
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and so the triangular inequality does not hold. This means that φ is not a
quasi-pseudo-metric, but a natural function for measuring social distances.

We will solve this problem by defining a general rule for generation of
quasi-pseudo-distances by means of the notion of proximity function, that
will be introduced in the next section. As we will see there, the function φ
above is a canonical example of such a proximity function.

4. The general scheme for the use of graph
quasi-pseudo-metrics for fraud detenction

We are interested in defining a general procedure for analyzing relations
inside a set Ω defined by “entities” (including persons, companies,...) using
the information appearing in text documents, considering that as sets of
emails, contracts, invoices and so. In a broad sense, the method follows the
next steps.

1) Detection and definition of a non-ambiguous set of entities for start-
ing the analysis. For doing this, the analyst must choose it, and a
specific setting must be performed for a fixed kind of fraud. Au-
thomatic processes can also be used: for example, semantic parsing
techniques provided by the Stanford group could be applied as well
as neural networks for training the searching system.

2) Definition of the matrix associated to a proximity function. This
is a function φ : Ω × Ω → R+ that describes by means of a non-
negative real number a relation among the entity a and the entity
b, both of them in Ω, which represent how far the individuals —
“entities”— are connected as elements of the network concerning
the economical/administrative activities. A small value of φ(a, b)
means that both a and b can be often found as parts of the same
activity/business; a big one, that there is not such a relation. Al-
though the function is supposed to be bounded (typically, by 1), it
is not assumed to be a distance. However, it may be assumed to be
symmetric and φ(a, b) = 0 if and only if a = b, and so it only fails
subadditivity for being a metric; such functions are sometimes called
semimetrics.

3) Definition of a distance on the set Ω by using a “sub-additive gauge”
for φ, that is, a new function d : Ω× Ω→ R+ that satisfies that

a) it is a metric,
b) and for all a, b ∈ Ω, d(a, b) ≤ φ(a, b).

Of course, for this to be true we need a proximity function φ that
is symmetric and separates points. In particular, d(a, b) = 0 if and
only if a = b.

We will explain later on how to define explicitly such a function
d given a function φ. In fact, the method that we propose is the
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main contribution of the present work, and has been performed in
a specific way for solving the problem that we explained above and
we originally faced.

4.1. The sub-additive gauge of a proximity function φ. For the con-
struction of such a gauge, given a function φ with the requirements explained
above we use a path-distance-like definition by considering a path distance in
the global graph Ω, in which all the vertices are assumed to be connected —a
complete graph—. We analyze the properties of such a metric, and several
procedures for defining the initial proximity matrix (φ(a, b))(a,b)∈Ω×Ω.

In Section 15.1 in [2, p.276], a weighted path metric for a connected graph
is defined as follows. If e is an edge of the graph, write w(e) for the value
of a positive weight; w is so assumed to be a (real positive) function acting
in the set of edges of the graph. The path distance dG among to vertices a
and b of the graph is given by

dG(a, b) := inf
{ ∑
ei∈P

w(ei)
}
,

where the infimum is computed over all paths P = {ei : i ∈ IP } that allow
to go from a to b.

We are interested in a construction that is similar to (but not equal to)
a weighted path metric defined on the set of all the vertices of a connected
graph. In our case all couples of elements of the set are assumed to be
directly connected by an edge, that is, the graph is complete. Consider a
non-increasing sequence W := (Wi)

∞
i=1 of positive real numbers, all of them

less or equal to one. Given two points a, b ∈ Ω, we define
(4.1)

dφ(a, b) = inf

{
W1φ(a, b), inf

{
W2

(
φ(a, c) + φ(c, b)

)
: a 6= c 6= b, c ∈ Ω

}
, ...

..., inf
{
Wn

(
φ(a, c1)+

n−2∑
i=1

φ(ci, ci+1)+φ(cn−1, b)
)
, a, c1, ..., cn−1, b pairwise 6=

}
, ...

}
.

Lemma 4.1. The function dφ(a, b) defined as above is a metric on Ω.

We will use the particular case given by the weights sequence W =
(1/i)∞i=1, and so the distance function is defined by

(4.2) dφ(a, b) = inf

{
φ(a, b), inf

{φ(a, c) + φ(c, b)

2
: a 6= c 6= b

}
,

inf
{φ(a, c1) + φ(c1, c2) + φ(c2, b)

3
: a 6= c1 6= b, a 6= c2 6= b, c1 6= c2 6= b

}
,

... , inf
{φ(a, c1) +

∑n−2
i=1 φ(ci, ci+1) + φ(cn−1, b)

n
, a, c1, ..., cn−1, b pairwise 6=

}
...

}
.



GRAPH DISTANCES FOR DETERMINING INTER-ENTITIES RELATIONS 9

Suppose now that the set Ω is finite, |Ω| = n ∈ N. Then we can represent
φ by means of the matrix of its range, that is,

Φ =

φ(a1, a1) · · · φ(a1, an)
...

. . .
...

φ(a1, an) · · · φ(an, an)

 =

 0 · · · φ(a1, an)
...

. . .
...

φ(a1, an) · · · 0

 .
We will call the matrix Φ the proximity matrix associated to φ.

Example 4.2. Let us give some examples of proximity matrices.

1) The first easy example is given by the metric defined in Example 3.1.
In this case, the proximity function is just the Euclidean metric; that
is, φ = d. Consequently, the corresponding proximity matrix Φ is a
metric matrix.

2) Let us show two examples of such construction that are not defined
as in Example 3.1. For the first one, consider Ω to be a group of
individuals that are involved in a business, and the only information
we have about it is written in a set M of documents. We want
to perform an analysis of the influence of the individuals in Ω in
the business. In order to do this and as a first approximation, we
consider the following proximity function.

Given a, b ∈ Ω, take the number of times Ma,b that a appears
together with b in a document. Define

φM (a, b) =
M −Ma,b

M
, a, b ∈ Ω.

Another step is needed to clean the matrix in case there are two dif-
ferent individuals in Ω such that they coincide in all the documents.
In this case, they must be considered just as only one vertex of the
corresponding complete graph. Note also that Ma,b = 1 indicates
that a and b are not appearing together in any document. However,
this does not mean that the distance among them has necessarily the
maximum value. The reason is that it may happen that a appear
in a document with c, and c with b. Using an adequate formula
for dφ —for example the one given by equation (4.2) with weights
Wi = 1/i as in the particular case given above—, we can easily see
that dφM (a, b) < 1.

3) Let us show now a different way of defining a proximity function
for the same problem. Let N = |Ω| and assume that there are M
documents. Take the N ×M -matrix C of all the counts C(a,m) of
the times that the individual a appears in document m. Normalize
all the vectors appearing in the rows and compute A = C · CT . It is
an N ×N -matrix giving the “cosinus” between elements of Ω. If the
element A(a, b) is near to one, this means that they appear in almost
the same documents; if it is near to 0, it means that they are not
appearing together.
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Take the N×N -matrix IN×N in which all the coefficients are equal
to 1, and compute Φ as

Φ = IN×N −A.

It gives a different proximity matrix. Actually, this construction is
the one that we will consider as standard, and will be developed with
some detail in the next section. As we will show there, it can be
interesting to combine different metrics, some/all of them defined by
proximity functions.

4.2. Proximity functions defined by means of correlation matrices:
the standard model. Let us fix a canonical version of the formulae ex-
plained in the previous parts of this section. It follows the lines of Example
4.2, 3).

A. Take a set of N entities Ω and a set of M properties —quantifiable
by means of positive real numbers— associated to each element a ∈
Ω. Construct the set of N vectors va each of them containing the
numerical value of the properties of a fixed a ∈ Ω.

B. Take the matrix C defined in a way that each row is such a vector
va after normalization, that is va/‖va‖2 (we use the Euclidean norm
for normalizing).

C. Consider the correlation matrix A = C · CT and take as proximity
matrix Φ = IN×N −A. Note that it is symmetric.

D. Use formula (4.2) for defining the pseudo-metric dφ.

E. The final distance for performing the analysis is given by the formula

d(a, b) = k · ‖va − vb‖2
max{‖vc‖2 : c ∈ Ω}

+ dφ(a, b), a, b ∈ Ω.

Here, k > 0 is a parameter for balancing both components of the
distance. The first one allows to measure the size of the vectors, for
detecting the case that one of its values has unexpected values (for
example, a big ammount of money appearing in any coordinate of
va). The second one provides information about the coincidence of
coordinates, measuring it using the “cosinus distance”.

Let us explain a complete example using this method.

Example 4.3. Consider 4 companies, ai, i = 1, ..., 4, which have been hired
by a public administration (PA) for doing similar services. We are interested
in analyzing if there is any irregular behavior in any of them in 2017. We
will show two problems and the models that correspond to each of them. We
only have information regarding total amount of money that PA paid to each
of them in 2017 and the number of contracts with each company.
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(1) Suppose that we want to analyze if the total amount of money xi, i =
1, ..., 4, got by each company ai is either equally distributed among
all the companies or we can find different patterns regarding that
to divide the companies in two groups. Let us use the procedure
explained above. The “vector of properties” vi for each company ai
contains just a coordinate, xi. The values (in thousands of euros)
are x1 = 4, x2 = 2, x3 = 2, and x4 = 1. The “Euclidean part” of
the pseudo-distance is then given by

dE(ai, aj) := |xi − xj |/max{4, 2, 1} = |xi − xj |/4, i, j = 1, ..., 4.

The part of the pseudo-metric given by the correlation matrix is given
(after normalization) by the trivial formula

I−A = I− C · CT = I−


1
1
1
1

 · [1 1 1 1
]

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Thus, the final pseudo-metric contains only the Euclidean compo-
nent, and is represented by the matrix

d = dE =


0 1/2 1/2 3/4

1/2 0 0 1/4
1/2 0 0 1/4
3/4 1/4 1/4 0

 .
This pseudo-metric allow to separate the set of the four companies
in two disjoint balls; indeed, for example for ε = 3/8, we have

B3/8(a1) = {a1}, and B3/8(a2) = {a2, a3, a4}.
The local density in both companies, computed as the ratio among
the number of elements in each ball and the radius of the —one
dimensional— balls give the values for ε = 3/8,

Density3/8(a1) = |B3/8(a1)|/(3/8) = 8/3

and
Density3/8(a2) = |B3/8(a2)|/(3/8) = 8

= Density3/8(a3) = Density3/8(a4).

Therefore, it can be easily seen that there is a concentration of mass
around a2, and a1 is surrounded by an area of low density. In this
sense, it can be established that a1 is an isolated point in terms of
density, so it is suspicious of receiving an special treatment from PA.
Of course, this fits with the fact that a1 got the biggest amount of
money in the contracts among all companies, and the difference with
the other ones seems to be meaningful.

This example is very easy, and present it just for showing how the
formalism works for almost trivial cases. No analyst needs to use
this procedure for obtaining this conclusion.



12 J.M. CALABUIG, H. FALCIANI, A. FERRER, L.M. GARCÍA AND E.A. SÁNCHEZ

(2) Suppose now that we want to analyze a different aspect of the same
problem, and we include in the investigation the number of contracts
of each of the companies with PA in 2017 given the total amounts
of money presented in (1). Now we consider two properties —two-
coordinates vectors— for each company: the first coordinate is the
amount of money in (1), and the second one if the number of con-
tracts. We have the following values: a1 = (4, 3), a2 = (2, 1),
a3 = (2, 2), and a4 = (1, 1). For the aim of simplicity, we identify
the companies ai with its two-coordinates property vectors (xi, yi),
i, j = 1, ..., 4.

As in the previous case, we have that the Eclidean part of the
distance is given by the Euclidean norm divided by the maximum of
the norms, that is, taking into account that

‖a1‖ = 5, ‖a2‖ =
√

5, ‖a3‖ = 2
√

2, ‖a4‖ =
√

2,

we get

dE(ai, aj) = ‖(xi, yi)− (xj , yj)‖2/max{‖ai‖2} =
‖(xi, yi)− (xj , yj)‖2

5
.

This gives the metric matrix

DE =


0 2

√
2

5

√
5

5

√
13
5

2
√

2
5 0 1

5
1
5√

5
5

1
5 0

√
2

5√
13
5

1
5

√
2

5 0

 ∼


0 0.566 0.447 0.721
0.566 0 0.2 0.2
0.447 0.2 0 0.283
0.721 0.2 0.283 0

 .
On the other hand, the proximity matrix given by the correlation
matrix is in this case meaningful. Indeed,

I−A = I− C · CT

= I−


4
5

3
5

2√
5

1√
5

1√
2

1√
2

1√
2

1√
2

 ·
[

4
5

2√
5

1√
2

1√
2

3
5

1√
5

1√
2

1√
2

]
∼


0 0.016 0.010 0.010

0.016 0 0.051 0.051
0.01 0.051 0 0
0.01 0.051 0 0

 .
This is not a pseudo-metric matrix: note for example tbat

0.051 = φ(a2, a3) > φ(a2, a1) + φ(a1, a3) = 0.016 + 0.010.

In order to provide a pseudo-metric dφ preserving as much as possible
the size of the coefficients of the original proximity matrix, we use
(4.1) with all weights equal to one, that is Wi = 1, i = 1, ..., 4. We
obtain the pseudo-metric matrix

dφ ∼


0 0.016 0.010 0.010

0.016 0 0.026 0.026
0.01 0.026 0 0
0.01 0.026 0 0

 .
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The final distance matrix is then given by

D = λDE + dφ.

This can be used for the analysis in the same way that was made in
(1). However, if we look at the two matrizes as separately , we get
more information about the problem.

(i) Using dE, we find again a similar conclusion that the one we get
in (1): the first company is the only element in the ball of radius
ε = 0.4. However, a ball of the same size ε = 0.4 centered in
a2 contains the rest of the elements, a2, a3 and a4. The same
argument that was used in (1) using Density0.4 provides the
same conclusion that in (1).

(ii) The second matrix —associated to dφ— centers the attention
in other element. In this case, the ball B0.015(a2) only contains
a2. However, the ball B0.015(a1) contains a1, a3 and a4. The
density arround a2 is then smaller than density around a1, a3

and a4. This means that a2 would be suspicious of getting a
special treatment, or at least that its hiring pattern is not the
same. Note that this pseudo-metric measures the proportion be-
tween amount of money and number of contracts. The result
shows that the company a2 is not following the same propor-
tion, what means that the money associated to each contract is
different. This may be just by chance, but also would indicate
that there is someone interested in manimulating the standard
hiring procedure, and so it would be suspicious of fraud.

5. Final remarks: application to detection of irregular
behavior of elements in a network

In this section and to finish the paper, we give some open ideas for ap-
plying the ideas developed in the paper. We can consider the following
problems to solve as application of our metric structure.

• The first and canonical one: given an entity a ∈ Ω, find the rest of
the elements of Ω that are near (distance less than ε > 0). This is
the first step of the neighbourhood analysis that allow to compute
a density map for searching anomalous behaviours. But is also pro-
vides a primary information, providing the entities that are close to
a given one a with respect to the criterium used for the construction
of the proximity function.
• Degree of dependence of the “graph distance” on a single element
a ∈ Ω: this is the norm of the difference of the submatrix Da that is
obtained by eliminating the row and column associated to a in the
distance matrix D, and the distance matrix D(−a) that is computed
when the set considered is Ω \ {a} instead of Ω. If the value is small,
this means that the element a is not relevant for the graph, it is not
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really connected or it is not giving easy paths for other entities to
be connected.
• Optimization: given a point a ∈ Ω and a subset S ⊂ Ω, find the

element(s) b in S such that dφ(a, b) attains its minimum.
• A singular-values-type method for determining the classes of equiva-

lence of entities in the space having the same behavior, in the sense
that they appear in the same documents. We use the matrix A
defined in Example 4.2, 3). Consider the individuals a1 to an and
suppose they are appearing in the same documents, and they are
the only ones appearing in these documents. Then we can write the
vectors of the matrix A corresponding to these individuals as

1/
√
n (1, 1, ..., 1, 0, ...0),

where the coefficient equal to 1 appear in the n first positions. On
the other hand, the other individuals have coefficients that are all of
them 0 in the first n positions (check that, this is a consequence of the
construction of A based in the fact that they are appearing in disjoint
documents). When the corresponding submatrix is diagonalized, we
obtain an eigenvalue that is not zero and other one that is 0, that has
multiplicity n− 1. Therefore, there is only one document-appearing
behavior, the rest only repeat the behavior of the first individual. Of
course, we rarely are going to find this pure behavior, and so we use
the ideas of the singular vales method for giving the “almost zero”
version.

For doing this, compute the eigenvalues of the matrix {λi : 1 ≤
i ≤ m}. Fix ε > 0, and take the subspace Sε generated by the
eigenvectors associated to the eigenvalues λi < ε. Write the equation
A = UT∆U (U is the matrix of change of basis) and compute the
vectors va = (0, · · · , 1, · · · 0) representing the elements a ∈ Ω that
satisfy that Uva is in Sε. This is the set that can be eliminated from
the original set Ω, since they have an equivalent behavior that any
of the ones for which λi ≥ ε.

References

[1] Bolton R.J and and Hand D.J. “Unsupervised Profiling Methods for Fraud Detec-
tion”. (unpublished, available in Google Scholar).

[2] M.M. Deza, and E. Deza. ”Encyclopedia of distances.” Springer, Berlin Heidelberg,
2009.

[3] Jack Dorminey, A. Scott Fleming, Mary-Jo Kranacher,Richard A. Riley, Jr. “The
Evolution of Fraud Theory.” Issues in Accounting Education: May (2012), Vol. 27,
No. 2, pp. 555–579.
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