
DREAMING MACHINE LEARNING: QUASI-DISTANCES AND

LIPSCHITZ EXTENSIONS FOR MODELING FINANCIAL

PROCESSES

(WORK IN PROGRESS)

J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ-PÉREZ

Abstract. We present a concrete application of Lipschitz type extension of

reward functions defined on metric spaces. Using some known states of a dy-

namical system representing the evolution of a financial market, we use our
technique to create new ones. This provides an improvement of the invest-

ing strategy in the market using less information, giving a new technique for

reinforcement learning.

1. Introduction and basic definitions

The aim of this paper is to show a new enviroment for the development of
new mathematical tools for reinforcement learning. We model a dynamical system
as a sequence of vectors of a finite dimensional space, and characterize certain
reward function for a known subset in it. Using well-known theoretical techniques
of extension of Lipschitz functions on metric spaces, we construct a framework
for understanding and computing improved reward functions in the context of the
reinforcement learning.

In this paper we are interested in finding suitable extensions of semi-Lipschitz
maps on quasi-metric graphs, with the aim of showing a new method of reinforce-
ment learning for artificial intelligence. Our arguments bring together ideas from
abstract topology on quasi-metrics and semi-Lipschitz maps and practical compu-
tational tools for extending Lipschitz functions on metric vector spaces. Thus, we
use the McShane and the Whitney extension formulas for Lipschitz maps in order
to extend reward functions in a particular way. Although our approach is new, the
reader can find some related ideas in [1, 2, 5].

We center our attention in a concrete problem: given a sequence of states of a
financial parket and a reward function acting in it, we are interested in extending
the reward in a meaningful way for providing a improved tool for decision making.
This allows to mix original known situations with new created states (dreamed
states), we produce a typical reinforcement learning procedure. Computations are
easy, since the extension formulas are simple, so the technique would be applied
when a big ammount of data are involved.

Let us present some relevant concepts. A quasi-pseudo-metric on a set M is a
function d : M ×M → R+ —the set of non-negative real numbers— such that

Date: May 17, 2018.
Key words and phrases. Quasi-pseudo-metric, machine learning.

1

2 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ

(1) d(a, b) = 0 if a = b, and
(2) d(a, b) ≤ d(a, c) + d(c, b)

for a, b, c ∈ M . A topology is defined by such a function d: the open balls define
the basis of neighborhoods. For ε > 0, we define the ball of radius ε and center in
a ∈M as

Bε(a) :=
{
b ∈M : d(a, b) < ε

}
.

(M,d) is called a quasi-pseudo-metric space. We will work in this note with metrics,
that is d(a, b) = 0 if and only if a = b, and d(a, b) = d(b, a) for all a, b ∈M . In this
case, the defined topology is Hausdorff. The same technique can be applied in the
general quasi-pseudo-metric case, although this property would not be satisfied.

Let us recall now some notions regarding functions. Let (M,d) be a metric space.
A function f : M → R is a Lipschitz function if there is a positive constant K such
that

|f(a)− f(b)| ≤ Kd(a, b), a, b ∈M.

The infimum of such constants K is called the Lipschitz constant of f .
Regarding extensions of Lipschitz maps, the McShane-Whitney theorem states

that if M0 is a subset of a metric space (M,ρ) and T : M0 → R is a Lipschitz

function with Lipschitz constant K, there always exists a Lipschitz function T̃ :
M → R extending T and with the same Lipschitz constant. The function

T̃ (x) := sup
u∈B
{T (u)−K ρ(x, u)}, x ∈M,

provides such an extension; it is sometimes called the McShane extension. We will
use it for giving a constructive tool for our approximation. The Whitney formula,
given by

TW (x) := inf
u∈B
{T (u) +K ρ(x, u)}, x ∈M,

provides also an extension. We will use the first one in this paper. The reader can
find some information about the theoretical foundations in [3, 4].

2. Metric spaces of states and Lipschitz maps: an algorithm for
machine learning

We will work with the following metric space as model of a dynamical system
given by a financial market. Consider a subset M0 of vectors of a finite dimensional
linear space M . We define a metric defined by mixing the angular pseudo-distance
(geodesic distance) and the Euclidean norm in this space. Thus, if

Cos(si, sj) =
si · sj
‖si‖ ‖sj‖

, si, sj ∈M,

we define a distance by mixing the angle

Θ(si, sj) =
ArcCos

(si·sj
‖si‖ ‖sj‖

)
π

,

and an Euclidean component

E(si, sj) = ‖sj − si‖2 =

√√√√ 4∑
k=1

|ski − skj |2.

We define the distance in our space as

DREAMING MACHINE LEARNING 3

(2.1) dε(si, sj) = Θ(si, sj) + εE(sj , si).

We can use for defining the distance d for example ε = 1/10, that is, we use

d(si, sj) = d1/10(si, sj) = Θ(si, sj) +
1

10
E(sj , si).

We consider (M0, d) as a subspace of a bigger metric space (M,d), where M is
the finite dimensional space fixed at the beginning.

We will consider also a reward function R acting in M0, and we want to extend
it to the whole M . It is supposed to measure “how succesful” is a given state.
We will use the MacShane extension formula. We have to compute the Lipschitz
constant K for the reward function R in order to get the extension R̂, for which
the same K works.

Finally, we will use R̂ for simulating new time sequences. In order to do this, we
generate randomly new states for increasing the set M0. We create in this way a
new seminal set M1 bigger than M0, in which we are mixing “known situations” (
s ∈ M0) and new ones, (“dreams”, s∗ ∈ M1 \M0.) The rate of elections of known
cases and dreams that we have chosen is β = 50%.

We use this procedure for defining a new time series. We can already compare
it with the known one. The final proof is the next step.

3. Training and dreaming: a Lipschitz approximation to a real
market reward function

Suppose that we are analyzing four markets for the same product. We have the
complete behavior of the values of all of them each minute of a day. For the aim of
simplicity, we assume that at t = 0 the value in all the markets equals 0.

1. A state of the system is given by a five coordinate vector: each minute the
vector gives the cumulative increase or decrease of the value in each market;
the last coordinate corresponds to the value when nothing is invested.

We consider series of “bets” applied at each minute: they are described
as the % of the money that the decision maker wants to apply in each
market this minute (including not investing a certain part). It is supposed
he is investing 100 money units at each step. A bet is then given by a five
positive coordinate vector summing 100; recall we have five coordinates
since the decision maker could decide not to invest a part of the money this
time.

2. The reward function is then defined as a two variable function given by the
scalar product of the state and the

R(a, s) = a · st,

where st is the transpose of the vector s.
We can use all the information for similar situations for computing a

reward function depending only on the state, that will be the one which

4 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ

will be used. This is relevant, since we are going to evaluate the state of
the system using this reward function.

In order to define it, we use the following procedure. For a state of the
system s, we use the distance defined by Formula (2.1) for d = 1/10 for
obtaining similar states that have been already checked, and for which we
have obtained the reward function. We define then

R(s) := meanR(a, s),

where the mean is computed over two sets, in a relation of 90% and 10%,
respectively.

a) The first set —90%— is defined by using bets a applied for states
that are similar to s with respect to the distance d1/10 that have obtained
a good enough values of the reward.

b) The second one —10%— is randomly obtained.

3. We perform in this way a method for obtaining a reward function. We
use the first 50% positions of the market (Figure 1) to train the way we
define the adequate values of the elements of the system —R, a...—. The
complementary 50% is used for checking the behavior of the model (Figure
2).

Figure 1. Behavior of the set of states for training the model.

DREAMING MACHINE LEARNING 5

Figure 2. Behavior of the set of states for testing the model.

4. Next we sort a number of bets that have already been improved using the
observations of the market shown in the previous figures. In Figure 3 and
Figure 4 a sequence of bets that have been sorted/optimized as explained
before. At each time, the sum of the values in the five graphics sum 100%.

Figure 3. Sequence of real states for the construction of the re-
ward function.

6 J.M. CALABUIG, H. FALCIANI AND E.A. SÁNCHEZ

Figure 4. Sequence of states including dreamed states for the
construction of the reward function.

In the first one (Figure 3), the bets are obtained by using the reward
function. They are given by particular five dimensional vectors which sat-
isfy that the reward function takes the value that have been obtained as
explained in step 2. In this case, all the bets are associated to values of the
reward function that have been computed using real (observed) values of
the market, as in Figure 1.

The second one (Figure 4) represents the bets that have been obtained
by mixing “real states” an “dreamed states”. The “dreamed states” are
obtained by using the McShane extension R̂ of the reward function R.
Both type of states are sorted each time with a probability of β = 50%.

5. Finally, we check the success of the model when 50% of the information
about the reward function is obtained by the McShane extension R̂ of the
computed reward function R. In the terminology that we have introduced
in the paper, we have 50% of real states and 50% of dreamed states.

We assume that we start betting in the market at time t = 0 with 1000
of money units and we stop when we loose all of them. In order to check the
success of the model, we produce a simulation when the reward function
is purely obtained by the information of the market (Figure 3), and using
50% of dreamed states (Figure 4). The reader can notice the the success
is similar in both cases. That is, the same result can be obtained by using
the McShane extension of the 50% of known date instead of 100% of real
data.

DREAMING MACHINE LEARNING 7

Figure 5. Simulation with real data obtained from the experience.

Figure 6. Simulation with 50% of real data +50% of dream.

References

[1] Asadi, K., Dipendra, M., and M.L. Littman. ”Lipschitz Continuity in Model-based Rein-

forcement Learning.” arXiv preprint arXiv:1804.07193 (2018).

[2] Kurt Driessens, Jan Ramon, Thomas Gärtner Graph kernels and Gaussian processes for
relational reinforcement learning, Mach Learn (2006) 64:91119 DOI 10.1007/s10994-006-

8258-y
[3] Mustata, Costica. ”Extensions of semi-Lipschitz functions on quasi-metric spaces.” Rev.

Anal. Numr. Thor. Approx. 30.1 (2001): 61-67.

[4] Mustata, Costica. ”On the extremal semi-Lipschitz functions.” Rev. Anal. Numr. Thor.
Approx. 31.1 (2002): 103-108.

[5] N’Guyen, S., Moulin-Frier, C., and Droulez, J. (2013). Decision making under uncertainty:

a quasimetric approach. PloS one, 8(12), e83411.

