

Segundo Parcial de Matemáticas II Grado Ingeniería Biomédica

ETSII de València. Junio de 2023

Apellidos	Nombre	

Instrucciones

- 1 Comienza poniendo el nombre y apellidos.
- **2** En la pregunta de Verdadero o Falso marca claramente tu respuesta. En otro caso la pregunta no será puntuada.
- **3** Excepto en la primera pregunta pon todos los cálculos necesarios.
- 4 No se puede usar ningún tipo de material de consulta ni asistentes electrónicos.
- **5** Escribe con bolígrafo azul o negro.
- **6** El tiempo total es de 2 horas.

Nota final		
Puntuación		
Ejercicio 1	1	
	2	
Ejercicio 2	1	
	2	
Ejercicio 3	1	
	2	
Ejercicio 4	1	
	2	
Ejercicio 5	1	
	2	

Ejercicio 1—10 puntos: 5 puntos cada apartado—

1 Indica si las siguientes afirmaciones son Verdaderas o Falsas (no hay que justificar nada). Las respuestas correctas suman 0.5 puntos y las incorrectas restan 0.25 puntos.

$$egin{aligned} \hline \mathbf{V} \\ \hline \mathbf{F} \end{bmatrix}$$
 Si $f(x) = \cos x$ entonces $f^{x)}(0) = \frac{-1}{10!}$.

La ecuación del plano tangente a la superficie $z = x^2 - y^2$ en el punto (1,1,0) es 2x - 2y - z = 0.

Si una serie de Taylor de centro a = 1 es divergente en x = 3 y convergente en x = -1 entonces el radio de convergencia de la serie derivada es 2.

$$\boxed{\mathbf{V} \atop \mathbf{F}} \int_0^{\pi} \cos^2(x) dx = \frac{\pi}{2}.$$

Para todo $x \in \mathbb{R}$ se verifica que $\operatorname{sh}^2(x) - \operatorname{ch}^2(x) = 1$.

V Si $f(x,y) = x^2 - y^2$ entonces $D_{(1,-1)}f(x,y) = \sqrt{2}(x+y)$.

 $rac{\overline{\mathbf{V}}}{\mathbf{F}}$ La suma de la serie $\sum_{n=1}^{\infty} rac{2^{n/3}}{n!}$ es $e^{\sqrt{3}}$.

 $lackbox{V}{\mathbf{F}}$ La suma de la serie $\sum_{n=1}^{\infty} \binom{2}{n} 3^n$ es 15.

 $egin{aligned} \hline \mathbf{V} \\ \hline \mathbf{F} \end{aligned}$ La suma de la serie $\sum_{n=0}^{\infty} \binom{1/2}{n} 3^n$ es 2.

2 El Método del descenso del gradiente asegura que si f es una función diferenciable en (a,b) entonces de todas las derivadas direccionales la **menor** se obtiene tomando como vector **unitario**:

$$\mathbf{u_{min}} =$$

Para la demostración usamos en primer lugar que como f es diferenciable en (a,b) entonces la derivada direccional la podemos escribir a partir del vector gradiente usando la fórmula

$$D_{\mathbf{u_{\min}}}f(a,b) =$$

Pero el producto escalar en \mathbb{R}^2 se puede escribir en función del ángulo y por lo tanto la derivada direccional la podemos reescribir como

$$D_{\mathbf{u_{min}}}f(a,b) =$$

Y como el vector $\mathbf{u_{min}}$ es un vector unitario entonces el menor valor se obtiene cuando el coseno vale y por la tanto el valor de la derivada direccional es

$$D_{\mathbf{u_{min}}}f(a,b) =$$

Ejercicio 2 —10 puntos: 5 puntos cada apartado—

Calcula el dominio de convergencia de la serie $\sum_{n} \frac{x^{3n}}{7^n \sqrt{n}}$.

2 Calcula el valor de $\sum_{n=1}^{\infty} \frac{n+2}{(n-1)!} 3^{n+1}.$

Ejercicio 3 —10 puntos: 5 puntos cada apartado—
Calcula el desarrollo de MacLaurin de la función $f(x)=5 \arccos(5x)$, indicando el radio de convergencia de la serie obtenida.

2 Calcula, usando un polinomio de MacLaurin de segundo grado, una aproximación de $\ln(1.01)$. Escribe también un valor del error cometido.

Ejercicio 4 —10 puntos: 5 puntos cada apartado—

Calcula el volumen de la superficie encerrada por las superficies de ecuaciones $z=x^2+y^2$ y $(2-z)^2=x^2+y^2$ y exterior a $x^2+y^2=(1/2)^2$ con $z\leq 2$.

2 Calcula $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{1 + (\frac{k}{n})^2}.$

Ejercicio 5 —10 puntos: 6 puntos el primer apartado y 4 el segundo—

- $\textbf{1} \ \ \text{Considera la función} \ f(x,y) = e^x \int_{y^3}^{y^2} e^{-t^2} dt.$
 - (a) Demuestra que f es diferenciable en el punto (1,0).
 - (b) Calcula la ecuación del plano tangente a la superficie z = f(x, y) en (1, 0, 0).
 - (c) Calcula la derivada direccional máxima de f en (1,0).

2 Estudia y clasifica los extremos relativos de la función $f(x) = 5x^2 + (y^2 - 16)^2$.