2025
57.Metric symmetry and distance distribution functions on graphs. Calabuig, J. M.; Sánchez Pérez, Enrique Alfonso; Sanjuan, S. Accepted in Aequationes Mathematicae.
56. Lattice Lipschitz superposition operators on Banach function spaces. Arnau-Notari, Andres Roger; Calabuig, J. M.; Erdogan, Ezgi; Sánchez Pérez, Enrique Alfonso. Accepted in JMAA.
2024
55. Moduli of Continuity in Metric Models and Extension of Livability Indices. Arnau-Notari, Andres Roger; Calabuig, J. M.; González, Á; Sánchez Pérez, Enrique Alfonso. Axioms 13 (3)(2024), 192. https://doi.org/10.3390/axioms13030192
54. A Bellman–Ford Algorithm for the Path-Length-Weighted Distance in Graphs. Arnau-Notari, Andres Roger; Calabuig, J. M.; Garcia-Raffi L.M., Sánchez Pérez, Enrique Alfonso; Sanjuan, S. Mathematics 12 (16)(2024), 25901. https://doi.org/10.3390/math12162590
53. Approximation of Almost Diagonal Non-linear Maps by Lattice Lipschitz Operators. Arnau-Notari, Andres Roger; Calabuig, J. M.; Erdogan, Ezgi; Sánchez Pérez, Enrique Alfonso. Bulletin of the Brazilian Mathematical Society New Series, 1(55) (2024). https://doi.org/10.1007/s00574-024-00385-9
52. Using neural networks and hierarchical cluster analysis to study goal kicks in football. Arnau Notari, Andres Roger; Calabuig, J. M.; Catalán, César; Garcia Raffi, L.M.; Pardo Gila, J.M.; Pons Anaya, R.; Sánchez Pérez, Enrique Alfonso. International Journal of Sports Science & Coaching 19(4)(2024). https://doi.org/10.1177/17479541231207184
2023
51. Measure-Based Extension of Continuous Functions and $p$-Average-Slope-Minimizing Regression. Arnau Notari, Andres Roger; Calabuig, J. M.; Sánchez Pérez, Enrique Alfonso. Axioms, 4 (12), 359. https://doi.org/10.3390/axioms12040359
50. Extension procedures for lattice Lipschitz operators on Euclidean spaces. Arnau Notari, Andres Roger; Calabuig, J. M.; Erdogan, E.; Sánchez Pérez, Enrique Alfonso. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 2(117) (2024). https://link.springer.com/article/10.1007/s13398-023-01402-0
49. Graph Distances for Determining Entities Relationships: A Topological Approach to Fraud Detection. Calabuig J.M.; Ferrer A.; Garcia-Raffi L.M.;Sánchez Pérez E.A. International Journal of Information Technology & Decision Making, 4(22), 1403-1438. https://doi.org/10.1142/S0219622022500730
2022
48. Representation of Lipschitz Maps and Metric Coordinate Systems. Arnau Notari, Andres Roger; Calabuig, J. M.; Sánchez Pérez, Enrique Alfonso. Mathematics , 10(20)(2022), 3867. https://doi.org/10.3390/math10203867
2021
47. Kaplan-Meier Type Survival Curves for COVID-19: A Health Data Based Decision-Making Tool. Calabuig, J. M.; García-Raffi, L. M.; García-Valiente, A.; Sánchez Pérez, Enrique Alfonso. Frontiers in Public Health (9)(2021), 1-9. https://doi.org/10.3389/fpubh.2021.646863
46. Modeling Hospital Resource Management during the COVID-19 Pandemic: An Experimental Validation. Calabuig, J. M.; Jiménez-Fernández, E.; Sánchez Pérez, Enrique Alfonso; Manzanares, S. Econometrics, 4(9)(2021), 1-16. https://doi.org/10.3390/econometrics9040038
45. $(q,1)$-summing operators acting in $C(K)$-spaces and the weighted Orlicz property for Banach spaces. Calabuig, J.M.; Sánchez Pérez, E.A. Positivity 3(25)(2021), 1199-1214. https://link.springer.com/article/10.1007/s11117-015-0347-3
44. Maximal factorization of operators acting in Köthe-Bochner spaces. Calabuig, J.M.;Fernández Unzueta, M.; Galaz Fontes, F.; Sánchez Pérez, E.A. The Journal of Geometric Analysis 31(2021), 560-578. https://link.springer.com/article/10.1007/s12220-019-00290-4
2020
43. Govern obert i accés a la informació: un estudi de cas sobre l’impacte en l’economia local. Ferrer-Sapena, A.; Calabuig, J.M.; Sánchez Pérez, E.A.; Vidal-Cabo, C. BiD, textos universitaris de biblioteconomia i documentació 45 (desembre). http://bid.ub.edu/45/ferrer.htm
42. Trabajar con datos abiertos en tiempos de pandemia: uso de covidDATA-19. Ferrer-Sapena, A.; Calabuig, J.M.; Peset Mancebo, M.F.; Sánchez Del Toro, M.I. El profesional de la información 29(4), 11. https://revista.profesionaldelainformacion.com/index.php/EPI/article/view/79346
41. Evolution model for epidemic diseases based on the Kaplan-Meier curve determination. Calabuig, J.M.; García-Raffi, L.M.; García-Valiente, A.; Sánchez Pérez, E.A. Mathematics 8(8), 1260. https://www.mdpi.com/2227-7390/8/8/1260
40. Dreaming machine learning: Lipschitz extensions for reinforcement learning on financial markets. Calabuig, J.M.; Falciani, H.; Sánchez Pérez, E.A. Neurocomputing 398(2020), 172–184. https://www.sciencedirect.com/science/article/pii/S0925231220302423
39. Weighted $p$-regular kernels for reproducing kernels Hilbert spaces and Mercer Theorem. Agud, L.; Calabuig, J.M.;Sánchez Pérez, E.A. Analysis and Applications 18(3)(2020), 359–383. https://www.worldscientific.com/doi/10.1142/S0219530519500179
38. Where should I submit my work for publication? An asymmetrical distribution model to optimize choice. Calabuig, J.M.; Ferrer-Sapena, A.; Garcia Raffi, L.M.; Sánchez Pérez, E.A. Journal of Classification 37(2020), 490–508. https://link.springer.com/article/10.1007/s00357-019-09331-7
37. Banach lattice structures and concavifications in Banach spaces. Agud L.; Calabuig, J.M. ; Juan Blanco, A. ; Sánchez Pérez, E.A. Mathematics 2020, 8(1)(2020), 127. https://www.mdpi.com/2227-7390/8/1/127
2019
36. Completability and optimal factorization norms in tensor products of Banach function spaces. Calabuig, J.M.; Fernández Unzueta, M.; Galaz Fontes, F.; Sánchez Pérez, E.A. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales 113(4)(2019), 3513–3530. https://link.springer.com/article/10.1007/s13398-019-00711-7
35. Equivalent Norms in a Banach Function Space and the Subsequence Property. Calabuig, J.M.; Fernández Unzueta, M.; Galaz Fontes, F.; Sánchez Pérez, E.A. Journal of the Korean Mathematical Society 56(5)(2019), 1387–1401. https://jkms.kms.or.kr/journal/view.html?doi=10.4134/JKMS.j180682
34. Representation and factorization theorems for direct sums of $L^p$-spaces. Calabuig, J.M.; Galdames, O.; Juan, M.A.; Sánchez Pérez, E.A. Indagationes Matematicae 30(5)(2019), 930–942. https://doi.org/10.1016/j.indag.2019.04.001
2018
33. Visualizando la transformación económica: fuentes de información abiertas para indicadores económicos. La plataforma indicaME. Calabuig, J.M.; Peset Mancebo, F. Anuario ThinkEPI Volumen 12 (2018), 277–283. https://recyt.fecyt.es/index.php/ThinkEPI/article/view/thinkepi.2018.41
32. On $p$-Dunford integrable functions with values in Banach spaces. Calabuig, J.M.; Rodríguez, J.; Rueda, P.; Sánchez Pérez, E.A. J. Math. Anal. Appl. 464(1)(2018), 806–822. https://www.sciencedirect.com/science/article/pii/S0022247X18303287
31. Convolution-continuous bilinear operators acting in Hilbert spaces of integrable functions. Erdogan, E.; Calabuig, J.M.; Sánchez Pérez, E.A. Annals of Functional Analysis 9(2)(2018), 166–179. https://projecteuclid.org/euclid.afa/1512529265
2017
30. Factorization of operators through subspaces of $L^1$-spaces. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. J. Aust. Math. Soc. 103(3)(2017), 313–328. https://www.cambridge.org/core/journals/journal-of-the-australian-mathematical-society/article/abs/factorization-of-operators-through-subspaces-of-l1-spaces/1145365181909D17E6F409F0471BDD3E
29. Differentiablity on $L^p$ of Vector Measure and Applications to the Bishop-Phelps-Bollobás Property. Agud, L.; Calabuig, J.M.; Lajara, S.; Sánchez Pérez, E.A. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 111(3)(2017), 735–751. https://link.springer.com/article/10.1007/s13398-016-0327-x
28. Summability in $L^1$ of a Vector Measure. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. Math. Nachr. 290(4)(2017), 507–519. https://onlinelibrary.wiley.com/doi/full/10.1002/mana.201600020?deniedAccessCustomisedMessage=&userIsAuthenticated=false
2016
27. Vector-valued impact measures and generation of specific indexes for research assesment. Calabuig, J.M.; Ferrer-Sapena, A.; Sánchez Pérez, E.A. Scientometrics 108(2016), 1425–1443. https://link.springer.com/article/10.1007/s11192-016-2039-6?view=classic
26. Optimal extensions of compactness properties for operators on Banach function spaces.Calabuig, J.M.; Jiménez Fernández, E.; Juan, M.A.; Sánchez Pérez, E.A.Topology and its Applications 203(2016), 57–66. https://www.sciencedirect.com/science/article/pii/S0166864115006082
25. Tensor product representation of Köthe-Bochner spaces and their dual spaces.Calabuig, J.M.; Jiménez Fernández, E.; Juan, M.A.; Sánchez Pérez, E.A.Positivity 20(1)(2016), 155–169. https://link.springer.com/article/10.1007/s11117-015-0347-3
2015
24. $p$-variations of vector measures with respect to vector measures and integral representation of operators.Blasco, O.; Calabuig, J.M.; Sánchez Pérez, E.A. Banach Journal of Mathematical Analysis 9(1)(2015), 273–285. https://projecteuclid.org/journals/banach-journal-of-mathematical-analysis/volume-9/issue-1/p-variations-of-vector-measures-with-respect-to-vector-measures/10.15352/bjma/09-1-20.full
23. On the smoothness of $L^p$ of a positive vector measure.Agud, L.; Calabuig, J.M.; Sánchez Pérez, E.A. Monatshefte für Mathematik 178(3)(2015), 329–343. https://link.springer.com/article/10.1007/s00605-014-0666-7
2014
22. On the Banach lattice properties of $L_w^1$ of a vector measure on a $\delta$-ring. Calabuig, J.M.; Delgado, O.; Juan, M.A.; Sánchez Pérez, E.A.Collectanea Mathematica 65(1)(2014), 67–85. https://link.springer.com/article/10.1007/s13348-013-0081-8
21. Extending and Factorizing Bounded Bilinear Maps Defined on Order Continuous Banach Function Spaces.Calabuig, J.M.; Fernández Unzueta, M.; Galaz-Fontes, F.; Sánchez Pérez, E.A.Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 108(2)(2014), 355–367. https://link.springer.com/article/10.1007/s13398-012-0101-7
20. On completely continuous integration operators of a vector measure.Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. Journal of Convex Analysis 21(3)(2014), 811–818. https://www.heldermann.de/JCA/JCA21/JCA213/jca21043.htm
19. Compactness in $L^1$ of a vector measure. Calabuig, J.M.; Lajara, S.; Rodríguez, J.; Sánchez Pérez, E.A. Studia Mathematica 225(3)(2014), 259–282. https://www.impan.pl/en/publishing-house/journals-and-series/studia-mathematica/all/225/3/90820/compactness-in-l-1-of-a-vector-measure
2013
18. Fourier Transform and convolutions on $L^p$ of a vector measure on a Compact Haussdorf Abelian Group.Calabuig, J.M.; Galaz-Fontes, F.; Navarrete, E.M.; Sánchez Pérez, E.A.J. of Fourier Analysis and Applications 19(2)(2013), 312–332. https://link.springer.com/article/10.1007/s00041-012-9252-3
17. Strongly embedded subspaces of $p$-convex Banach function spaces.Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A.Positivity 17(3)(2013), 775–791. https://link.springer.com/article/10.1007/s11117-012-0204-6
2012
16. The weak topology on q-convex Banach function spaces.Agud, L.; Calabuig, J.M.; Sánchez Pérez, E.A. Math. Nachr. 285(2012), no. 2-3, 136–149. http://onlinelibrary.wiley.com/doi/10.1002/mana.201000030/abstract
15. Interpolation subspaces of $L^1$ of a vector measure and norm inequalities for the integration operator. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A.Contemporary Mathematics 561(2012), 155–165. http://www.ams.org/books/conm/561/
14. Spaces of $p$-integrable functions with respect to a vector measure defined on a $\delta-ring$. Calabuig, J.M.; Juan, M.A.; Sánchez Pérez, E.A. Operators and Matrices 6(2012), 241–262. http://oam.ele-math.com/06-17/Spaces-of-p-integrable-functions-with-respect-to-a-vector-measure-defined-on-a-delta-ring
2011
13. Multiplication operators in Köthe-Bochner spaces. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. J. Math. Anal. Appl. 373(1)(2011), 316–321. https://www.sciencedirect.com/science/article/pii/S0022247X10006153
2010
12. Weak continuity of Riemann integrable functions in Lebesgue-Bochner spaces. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 2, 241–248. https://link.springer.com/article/10.1007/s10114-010-7382-6
11. Factorizing operators on Banach function spaces through spaces of multiplication operators. Calabuig, J.M.; Delgado O.; Sánchez Pérez, E.A. J. Math. Anal. Appl. 364(2010), 88–103. https://www.sciencedirect.com/science/article/pii/S0022247X09008543
2009
10. Fourier analysis with respect to bilinear maps. Blasco, O.; Calabuig J.M. Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 4, 519–530. https://link.springer.com/article/10.1007/s10114-009-7399-x
9. On the structure of $L^1$ of a vector measure via its integration operator. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. Integral Equations and Operator Theory 64 (2009), 21–33. https://link.springer.com/article/10.1007/s00020-009-1670-5
2008
8. Hölder inequality for functions that are integrable with respect to bilinear maps. Blasco, O.; Calabuig, J.M. Math. Scand. 102 (2008), no. 1, 101–110. https://www.mscand.dk/article/view/15053
7. Radon-Nikodým derivatives for vector measures belonging to Köthe function spaces. Calabuig, J.M.; Gregori, P.; Sánchez Pérez, E.A. J. Math. Anal. Appl. 348 (2008), no. 1, 469–479. https://www.sciencedirect.com/science/article/pii/S0022247X08007348
6. A bilinear version of Orlicz-Pettis Theorem. Blasco, O.; Calabuig, J.M.; Signes, T. J. Math. Anal. Appl. 348 (2008), no. 1, 150–164. https://www.sciencedirect.com/science/article/pii/S0022247X08007191
5. $p$-variation of vector measures with respect to bilinear maps. Blasco, O.; Calabuig J.M. Bull. Aust. Math. Soc. 78 (2008), no. 3, 411–430. https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/pvariation-of-vector-measures-with-respect-to-bilinear-maps/B64E87BC43999DF928683378D4C27F39#
4. Vector-valued functions integrable with respect to bilinear maps. Blasco, O.; Calabuig J.M. Taiwan. J. of Math. 12 (2008), no. 9, 2387–2403. https://projecteuclid.org/euclid.twjm/1500405186
3. Generalized perfect spaces. Calabuig, J.M.; Delgado O.; Sánchez Pérez, E.A. Indag. Math. 19 (2008), no. 3, 359–378. https://www.sciencedirect.com/science/article/pii/S0019357709000081
2007
2. Strong factorization of operators on spaces of vector measure integrable functions and unconditional convergence of series.Calabuig, J.M.; Galaz Fontes, F.; Jiménez Fernández, E; Sánchez Pérez, E.A. Math. Z 257 (2007), 381–402. https://link.springer.com/article/10.1007/s00209-007-0130-7
2001
1. Finite semivariation and regulated functions by means of bilinear maps. Blasco, O.; Calabuig J.M.; Gregori, P. Real Analysis Exchange 26(2)(2001), 603–608. https://projecteuclid.org/euclid.rae/1214571353