Inicio » Investigación/Reseacrh » Publicaciones/Publications

Publicaciones/Publications

2022

50. Graph Distances for Determining Entities Relationships: A Topological Approach to Fraud Detection. Calabuig J.M.; Ferrer A.; Garcia-Raffi L.M.;Sánchez Pérez E.A. International Journal of Information Technology & Decision Making, Online First 2022. https://doi.org/10.1142/S0219622022500730

49. Representation of Lipschitz Maps and Metric Coordinate Systems. Andres Roger; Calabuig, J. M.; Sánchez Pérez, Enrique Alfonso. Mathematics , 10(20)(2022), 3867. https://doi.org/10.3390/math10203867

2021

47. Kaplan-Meier Type Survival Curves for COVID-19: A Health Data Based Decision-Making Tool. Calabuig, J. M.; García-Raffi, L. M.; García-Valiente, A.; Sánchez Pérez, Enrique Alfonso. Frontiers in Public Health (9)(2021), 1-9. https://doi.org/10.3389/fpubh.2021.646863

46. Modeling Hospital Resource Management during the COVID-19 Pandemic: An Experimental Validation. Calabuig, J. M.; Jiménez-Fernández, E.; Sánchez Pérez, Enrique Alfonso; Manzanares, S. Econometrics, 4(9)(2021), 1-16. https://doi.org/10.3390/econometrics9040038

45. $(q,1)$-summing operators acting in $C(K)$-spaces and the weighted Orlicz property for Banach spaces. Calabuig, J.M.; Sánchez Pérez, E.A. Positivity 3(25)(2021), 1199-1214. https://link.springer.com/article/10.1007/s11117-015-0347-3

44Maximal factorization of operators acting in Köthe-Bochner spaces. Calabuig, J.M.;Fernández Unzueta, M.; Galaz Fontes, F.; Sánchez Pérez, E.A. The Journal of Geometric Analysis 31(2021), 560-578. https://link.springer.com/article/10.1007/s12220-019-00290-4

2020

43Govern obert i accés a la informació: un estudi de cas sobre l’impacte en l’economia local. Ferrer-Sapena, A.; Calabuig, J.M.; Sánchez Pérez, E.A.; Vidal-Cabo, C. BiD, textos universitaris de biblioteconomia i documentació 45 (desembre). http://bid.ub.edu/45/ferrer.htm

42Trabajar con datos abiertos en tiempos de pandemia: uso de covidDATA-19.  Ferrer-Sapena, A.; Calabuig, J.M.; Peset Mancebo, M.F.; Sánchez Del Toro, M.I. El profesional de la información 29(4), 11.  https://revista.profesionaldelainformacion.com/index.php/EPI/article/view/79346

41Evolution model for epidemic diseases based on the Kaplan-Meier curve determination. Calabuig, J.M.; García-Raffi, L.M.; García-Valiente, A.; Sánchez Pérez, E.A. Mathematics 8(8), 1260. https://www.mdpi.com/2227-7390/8/8/1260

40Dreaming machine learning: Lipschitz extensions for reinforcement learning on financial markets. Calabuig, J.M.; Falciani, H.; Sánchez Pérez, E.A. Neurocomputing 398(2020), 172–184. https://www.sciencedirect.com/science/article/pii/S0925231220302423

39Weighted $p$-regular kernels for reproducing kernels Hilbert spaces and Mercer Theorem. Agud, L.; Calabuig, J.M.;Sánchez Pérez, E.A. Analysis and Applications 18(3)(2020), 359–383. https://www.worldscientific.com/doi/10.1142/S0219530519500179

38Where should I submit my work for publication? An asymmetrical distribution model to optimize choice. Calabuig, J.M.; Ferrer-Sapena, A.; Garcia Raffi, L.M.; Sánchez Pérez, E.A. Journal of Classification 37(2020), 490–508. https://link.springer.com/article/10.1007/s00357-019-09331-7

37Banach lattice structures and concavifications in Banach spaces. Agud L.; Calabuig, J.M. ; Juan Blanco, A. ; Sánchez Pérez, E.A. Mathematics 2020, 8(1)(2020), 127. https://www.mdpi.com/2227-7390/8/1/127

2019 

36Completability and optimal factorization norms in tensor products of Banach function spaces. Calabuig, J.M.; Fernández Unzueta, M.; Galaz Fontes, F.; Sánchez Pérez, E.A. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales 113(4)(2019), 3513–3530. https://link.springer.com/article/10.1007/s13398-019-00711-7

35. Equivalent Norms in a Banach Function Space and the Subsequence Property. Calabuig, J.M.; Fernández Unzueta, M.; Galaz Fontes, F.; Sánchez Pérez, E.A. Journal of the Korean Mathematical Society 56(5)(2019), 1387–1401. https://jkms.kms.or.kr/journal/view.html?doi=10.4134/JKMS.j180682

34Representation and factorization theorems for direct sums of $L^p$-spaces. Calabuig, J.M.; Galdames, O.; Juan, M.A.; Sánchez Pérez, E.A. Indagationes Matematicae 30(5)(2019), 930–942. https://www.sciencedirect.com/science/article/pii/S0019357718304671?via%3Dihub

2018 

33. Visualizando la transformación económica: fuentes de información abiertas para indicadores económicos. La plataforma indicaME. Calabuig, J.M.; Peset Mancebo, F. Anuario ThinkEPI Volumen 12 (2018), 277–283. https://recyt.fecyt.es/index.php/ThinkEPI/article/view/thinkepi.2018.41

32. On $p$-Dunford integrable functions with values in Banach spaces. Calabuig, J.M.; Rodríguez, J.; Rueda, P.; Sánchez Pérez, E.A. J. Math. Anal. Appl. 464(1)(2018), 806–822. https://www.sciencedirect.com/science/article/pii/S0022247X18303287

31. Convolution-continuous bilinear operators acting in Hilbert spaces of integrable functions. Erdogan, E.; Calabuig, J.M.; Sánchez Pérez, E.A. Annals of Functional Analysis 9(2)(2018), 166–179. https://projecteuclid.org/euclid.afa/1512529265

2017 

30. Factorization of operators through subspaces of $L^1$-spaces. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. J. Aust. Math. Soc. 103(3)(2017), 313–328. https://www.cambridge.org/core/journals/journal-of-the-australian-mathematical-society/article/abs/factorization-of-operators-through-subspaces-of-l1-spaces/1145365181909D17E6F409F0471BDD3E

29. Differentiablity on $L^p$ of Vector Measure and Applications to the Bishop-Phelps-Bollobás Property. Agud, L.; Calabuig, J.M.; Lajara, S.; Sánchez Pérez, E.A. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 111(3)(2017), 735–751. https://link.springer.com/article/10.1007/s13398-016-0327-x

28.  Summability in $L^1$ of a Vector Measure. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. Math. Nachr. 290(4)(2017), 507–519. https://onlinelibrary.wiley.com/doi/full/10.1002/mana.201600020?deniedAccessCustomisedMessage=&userIsAuthenticated=false

2016

27. Vector-valued impact measures and generation of specific indexes for research assesment. Calabuig, J.M.; Ferrer-Sapena, A.; Sánchez Pérez, E.A. Scientometrics 108(2016), 1425–1443. https://link.springer.com/article/10.1007/s11192-016-2039-6?view=classic

26. Optimal extensions of compactness properties for operators on Banach function spaces.Calabuig, J.M.; Jiménez Fernández, E.; Juan, M.A.; Sánchez Pérez, E.A.Topology and its Applications 203(2016), 57–66. https://www.sciencedirect.com/science/article/pii/S0166864115006082

25. Tensor product representation of Köthe-Bochner spaces and their dual spaces.Calabuig, J.M.; Jiménez Fernández, E.; Juan, M.A.; Sánchez Pérez, E.A.Positivity 20(1)(2016), 155–169. https://link.springer.com/article/10.1007/s11117-015-0347-3

2015

24. $p$-variations of vector measures with respect to vector measures and integral representation of operators.Blasco, O.; Calabuig, J.M.; Sánchez Pérez, E.A. Banach Journal of Mathematical Analysis 9(1)(2015), 273–285. https://projecteuclid.org/euclid.bjma/1419000592

23. On the smoothness of $L^p$ of a positive vector measure.Agud, L.; Calabuig, J.M.; Sánchez Pérez, E.A. Monatshefte für Mathematik 178(3)(2015), 329–343. http://link.springer.com/article/10.1007%2Fs00605-014-0666-7

2014

22. On the Banach lattice properties of $L_w^1$ of a vector measure on a $\delta$-ringCalabuig, J.M.; Delgado, O.; Juan, M.A.; Sánchez Pérez, E.A.Collectanea Mathematica 65(1)(2014), 67–85. http://link.springer.com/article/10.1007%2Fs13348-013-0081-8

21. Extending and Factorizing Bounded Bilinear Maps Defined on Order Continuous Banach Function Spaces.Calabuig, J.M.; Fernández Unzueta, M.; Galaz-Fontes, F.; Sánchez Pérez, E.A.Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 108(2)(2014), 355–367. https://link.springer.com/article/10.1007/s13398-012-0101-7

20. On completely continuous integration operators of a vector measure.Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. Journal of Convex Analysis 21(3)(2014), 811–818. https://www.heldermann.de/JCA/JCA21/JCA213/jca21043.htm

19. Compactness in $L^1$ of a vector measure. Calabuig, J.M.; Lajara, S.; Rodríguez, J.; Sánchez Pérez, E.A. Studia Mathematica 225(3)(2014), 259–282. https://www.impan.pl/en/publishing-house/journals-and-series/studia-mathematica/all/225/3/90820/compactness-in-l-1-of-a-vector-measure

2013

18. Fourier Transform and convolutions on $L^p$ of a vector measure on a Compact Haussdorf Abelian Group.Calabuig, J.M.; Galaz-Fontes, F.; Navarrete, E.M.; Sánchez Pérez, E.A.J. of Fourier Analysis and Applications 19(2)(2013), 312–332. https://link.springer.com/article/10.1007/s00041-012-9252-3

17. Strongly embedded subspaces of $p$-convex Banach function spaces.Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A.Positivity 17(3)(2013), 775–791. http://link.springer.com/article/10.1007%2Fs11117-012-0204-6

2012

16. The weak topology on q-convex Banach function spaces.Agud, L.; Calabuig, J.M.; Sánchez Pérez, E.A. Math. Nachr. 285(2012), no. 2-3, 136–149. http://onlinelibrary.wiley.com/doi/10.1002/mana.201000030/abstract

15. Interpolation subspaces of $L^1$ of a vector measure and norm inequalities for the integration operator. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A.Contemporary Mathematics 561(2012), 155–165. http://www.ams.org/books/conm/561/

14. Spaces of $p$-integrable functions with respect to a vector measure defined on a $\delta-ring$. Calabuig, J.M.; Juan, M.A.; Sánchez Pérez, E.A. Operators and Matrices 6(2012), 241–262. http://oam.ele-math.com/06-17/Spaces-of-p-integrable-functions-with-respect-to-a-vector-measure-defined-on-a-delta-ring

2011

13. Multiplication operators in Köthe-Bochner spaces. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. J. Math. Anal. Appl. 373(1)(2011),  316–321. https://www.sciencedirect.com/science/article/pii/S0022247X10006153 

2010

12. Weak continuity of Riemann integrable functions in Lebesgue-Bochner spaces. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 2, 241–248. https://link.springer.com/article/10.1007%2Fs10114-010-7382-6

11. Factorizing operators on Banach function spaces through spaces of multiplication operators. Calabuig, J.M.; Delgado O.; Sánchez Pérez, E.A. J. Math. Anal. Appl. 364(2010), 88–103. https://www.sciencedirect.com/science/article/pii/S0022247X09008543

2009

10. Fourier analysis with respect to bilinear maps. Blasco, O.; Calabuig J.M. Acta Math. Sin. (Engl. Ser.)  25 (2009), no. 4, 519–530. https://link.springer.com/article/10.1007%2Fs10114-009-7399-x

9. On the structure of $L^1$ of a vector measure via its integration operator. Calabuig, J.M.; Rodríguez, J.; Sánchez Pérez, E.A. Integral Equations and Operator Theory 64 (2009), 21–33. https://link.springer.com/article/10.1007/s00020-009-1670-5

2008

8. Hölder inequality for functions that are integrable with respect to bilinear maps. Blasco, O.; Calabuig, J.M. Math. Scand. 102 (2008), no. 1, 101–110. https://www.mscand.dk/article/view/15053

7. Radon-Nikodým derivatives for vector measures belonging to Köthe function spaces. Calabuig, J.M.; Gregori, P.; Sánchez Pérez, E.A. J. Math. Anal. Appl.  348  (2008),  no. 1, 469–479. https://www.sciencedirect.com/science/article/pii/S0022247X08007348

6. A bilinear version of Orlicz-Pettis Theorem. Blasco, O.; Calabuig, J.M.; Signes, T. J. Math. Anal. Appl. 348 (2008), no. 1, 150–164. https://www.sciencedirect.com/science/article/pii/S0022247X08007191

5. $p$-variation of vector measures with respect to bilinear maps. Blasco, O.; Calabuig J.M. Bull. Aust. Math. Soc. 78 (2008), no. 3,  411–430. https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/pvariation-of-vector-measures-with-respect-to-bilinear-maps/B64E87BC43999DF928683378D4C27F39#

4. Vector-valued functions integrable with respect to bilinear maps. Blasco, O.; Calabuig J.M. Taiwan. J. of Math. 12 (2008), no. 9, 2387–2403. https://projecteuclid.org/euclid.twjm/1500405186

3. Generalized perfect spaces. Calabuig, J.M.; Delgado O.; Sánchez Pérez, E.A. Indag. Math. 19 (2008), no. 3, 359–378. https://www.sciencedirect.com/science/article/pii/S0019357709000081

2007

2. Strong factorization of operators on spaces of vector measure integrable functions and unconditional convergence of series.Calabuig, J.M.; Galaz Fontes, F.; Jiménez Fernández, E;  Sánchez Pérez,  E.A.Math. Z  257 (2007), 381–402. http://link.springer.com/article/10.1007%2Fs00209-007-0130-7

2001 

1. Finite semivariation and regulated functions by means of bilinear maps. Blasco, O.; Calabuig J.M.; Gregori, P. Real Analysis Exchange 26(2)(2001), 603–608. https://projecteuclid.org/euclid.rae/1214571353